Exercice : Cas de l'Amibegron

Cette molécule a la structure suivante :

Formule de l'Amibegron.Informations

{\rm M}_{\rm m} = 440,37 g/mol

Nous avons ici une entité chimique qui a été développée sous forme d'un sel, en l'occurrence un chlorhydrate.

Pour simplifier, nous supposerons que deux formes cristallines vraies, dénommées A et B, ont été identifiées dans le cadre du triage polymorphique. Les paramètres de mailles des deux formes sont donnés ci-dessous :

Forme A

Forme B

Formule chimique

\ce{C22H27N1O4Cl2}

\ce{C22H27N1O4Cl2}

Poids moléculaire

440,37

440,37

Système cristallin

orthorombique

orthorombique

Groupe d'espace

P2,2,2

P2,2,2

Paramètres de maille :

    a\ (Å)

    b\ (Å)

    c\ (Å)

 

14,6119

14,7939

21,7429

 

6,5651

14,3500

22,8325

Z

8

4

Volume (Å^3)

4700

2151

Masse volumique (kg/m^3)

1247

1360

Une analyse par ACD, menée à 20\ °\textrm{C.min}^{-1}, fait apparaître pour chaque forme un pic de fusion dont les caractéristiques sont les suivantes :

pics de fusion ACD

Forme A :

T_{f,\,A} = 158\textrm{ °C}

\Delta h_{f,\,A} = 65\textrm{ J.g}^{-1}

Forme B :

T_{f,\,B} = 128\textrm{ °C}

\Delta h_{f,\,B} = 85\textrm{ J.g}^{-1}

Question

Quelle est la relation thermodynamique reliant A et B ?

Donner l'allure du diagramme G\left(T\right) pour les deux formes.

Votre réponse se trouve-t-elle confortée par l'examen des masses volumiques théoriques telles que présentées dans les tableaux ?

On effectue alors pour les deux formes une détermination des cinétiques de dissolution intrinsèques, soit J^A\left( T \right) et J^B\left( T \right) dans un milieu aqueux depH=3, avec une rotation de 100 tours/min et à 37 °C. La figure ci-dessous récapitule les données observées en \textrm{mg/cm}^2 de produit dissout en fonction du temps.

Cinétiques intrinsèques de dissolution. | | Informations complémentaires...Informations
Cinétiques intrinsèques de dissolution.Informations

Question

D'après ce résultat, quelle est la forme la plus stable à 37 °C  ?

Cela vous permet-il de préciser un peu plus le diagramme G\left( T \right) tracé précédemment ?

On effectue cette même détermination à plusieurs températures et on trace ensuite un diagramme type Van't Hoff \ln \left( J \right) = f\left( \frac{1}{T} \right) pour les deux formes. On obtient les courbes suivantes :

ln(J) en fonction de T. | | Informations complémentaires...Informations
ln(J) en fonction de T.Informations

On obtient un point de croisement pour la forme A (bleu) et la forme B (rouge) situé à une température de 63 °C.

Question

Cela vous permet-il de compléter votre connaissance de la thermodynamique du système ?

Sachant que les différences de cinétique de dissolution ne sont pas suffisamment importantes pour craindre un problème de bioéquivalence, quelle est la forme que vous choisiriez ?

Question

Sachant qu'une granulation humide est prévue pour fabriquer un comprimé, ce qui implique un séchage vers 70 °C, quelle stratégie allez-vous mettre en place pour vous assurer que la forme cristalline choisie est bien celle présente en fin de fabrication ?

Question

Les thermogrammes ACD enregistrés cette fois à 2\ \textrm{°C.min}^{-1} sont fournis ci-après. En fonction de la connaissance que vous avez maintenant du type de relation thermodynamique existant entre A et B, comment interprétez-vous ceux-ci ?

(on précise que les évènements thermiques enregistrés ne comportent aucune transition solide-solide)

| | Informations complémentaires...Informations
Thermogramme de la forme B.Informations
Thermogramme de la forme A. | | Informations complémentaires...Informations
Thermogramme de la forme A.Informations