Introduction
Considérons une population d'agrégats (constitués de particules primaires). L'agrégation de deux agrégats peut s'écrire formellement (i)+(j)→(i+j).
En étendant la cinétique de la réaction chimique à l'agrégation, la vitesse d'agrégation s'écrit :
avec
{H}_{1} : représente la nature hydrodynamique de la collision ;
{H}_{2} : représente l'hydrodynamique juste avant la collision ;
{k}_{0} et {k}_{a} sont des constantes cinétiques appelées aussi noyaux.
Le calcul de{k}_{0} est du à Von Smoluchowski 1916[1], et 1917[2]. Nous allons les détailler pour deux causes de collision : mouvement Brownien et fluide cisaillé. L'efficacité d'agrégation[3] \alpha [3] est en général difficile à évaluer. Elle dépend à la fois de l'hydrodynamique locale et des forces d'interaction entre particules. Pour simplifier, nous allons considérer par la suite l'agrégation[4] ente particules sphériques et non entre agrégats.
À ce stade, une remarque s'impose : nous allons nous intéresser aux phénomènes élémentaires (collision de deux particules et leur collage éventuel) ; cette description à l'échelle microscopique va nous permettre de déterminer directement les constantes cinétiques {k}_{a}\left(i,j\right) intervenant dans le bilan de population, c'est-à-dire à l'échelle macroscopique.