Cas d'un corps non dissocié

En reprenant l'équation \Delta {\mu }_{i}={\mu }_{i}^{L}-{\mu }_{i}^{L,\mathrm{eq}} on obtient

  • en activité :

    \Delta {\mu }_{i}=\mathrm{RTln}\left(\frac{{a}_{i}}{{a}_{i}^{\mathrm{eq}}}\right) soit \Delta {\mu }_{i}=\mathrm{RTln}\left(\frac{{\gamma }_{a,i}{x}_{i}}{{\gamma }_{a,i}^{\mathrm{eq}}{x}_{i}^{\mathrm{eq}}}\right)=\mathrm{RT}\mathrm{ln}S

    S est le rapport de sursaturation

  • en concentration molaire :

    \Delta {\mu }_{i}=\mathrm{RTln}\left(\frac{{\gamma }_{C,i}{C}_{i}}{{\gamma }_{C,i}^{\mathrm{eq}}{C}_{i}^{\mathrm{eq}}}\right)

De cette équation on en déduit des expressions simplifiées de la sursaturation.

Bien souvent en cristallisation , la solution est très proche de l'équilibre et donc le rapport des coefficients d'activité tend vers 1 ce qui permet de simplifier le calcul de la sursaturation.

Différentes expressions de la sursaturation pour une molécule non dissociée

Sursaturation

en activité

en concentration, en supposant que \frac{\gamma_{C,i}} {\gamma_{C,i}^{eq} } \rightarrow 1

rapport de sursaturation

S_{i,a}=\frac{a_{i}} {a_{i}^{eq}}

S_{i,C}=\frac{C_{i}} {C_{i}^{eq}}

sursaturation relative

\sigma_{i,a}=\frac{a_{i}} {a_{i}^{eq}}-1

\sigma_{i,C}=\frac{C_{i}} {C_{i}^{eq}}-1

sursaturation absolue

\Delta C_{i,a}=a_{i}-a_{i}^{eq}

\Delta C_{i,C}=C_{i}-C_{i}^{eq}